Assembly of a Triple-Cage Species Containing B, P, and Si Atoms

Tuqiang Chen,[†] Eileen N. Duesler,[†] Robert T. Paine,^{*,†} and H. Nöth^{*,‡}

Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, and Institut für Anorganische Chemie, Universität München, 80333 München, Germany

Received November 27, 1996

Interest in inorganic ring and cage compounds containing boron and phosphorus atoms continues to expand and diversify.^{1–3} In particular, our group has been interested in developing general assembly approaches for $B_x P_y E_z$ cage compounds that would permit a wide latitude in the selection of element stoichiometries and resultant cage sizes and structures. At this point, syntheses have been developed for bicyclic cages of the type P₂(R₂NB)₃,⁴ P₂(R₂NB)₂SiR₂,⁵ P₂(R₂NB)₂GeR₂,⁶ P₂(R₂NB)₂SnR₂,⁷ and P₂(R₂-NB)₂(SiR₂)₂.⁵ We report here an extension of this chemistry that leads to isolation of an unprecedented triple-cage molecule, P₆(ⁱPr₂NB)₆Si₂ (1), containing 14 atoms in the cage core.

Compound 1 is obtained as pale yellow crystals from the 4:1

combination of 'Pr2NBP(H)('Pr2NB)PLi·DME with Si2Cl6 in hexane.⁸ The compound is stable in dry air but slowly hydrolyzes in water or wet solvents. The composition of the molecule is confirmed by CHN analysis and high-resolution FAB-MS, which shows an intense envelope of ions in the region m/e 904–912 corresponding to the parent species. The molecular structure of 1 was deduced from single-crystal X-ray diffraction analysis,9 and a view of the molecule is shown in Figure 1. The structure consists of a bicyclic P₂B₂Si₂ cage and two P₂B₂Si bicyclic cages, which share the two silicon atoms and are joined through a Si-Si bond. The P(1)B(1)P(2)B(2) four-membered ring in the P2B2Si2 fragment is slightly folded (fold angle 17.0°) away from the Si-Si vector, and the two P2B2Si fragments are nearly eclipsed: the angle between the P(1)Si(1)Si(2) and P(2)Si(1)Si(2) planes is 10.9°. The metrical parameters for the bicyclic units are similar to those previously reported for the five-atom cage $P_2(^iPr_2NB)_2SiPh_2$ (2)⁵ and the

- [‡] Universität München.
- Sowerby, D. B. In *The Chemistry of Inorganic Homo- and Hetero-cycles*; Haiduc, I., Sowerby, D. B., Eds.; Academic Press: New York, 1987; Vol. I, Chapter 3.
- (2) Power, P. P.; Moezzi, A.; Pestana, D. C.; Petrie, M. A.; Shoner, S. C.; Waggoner, K. M. Pure Appl. Chem. 1991, 63, 859.
- (3) Paine, R. T.; Nöth, H. Chem. Rev. 1995, 95, 343.
- (4) Dou, D.; Wood, G. L.; Duesler, E. N.; Paine, R. T.; Nöth, H. Inorg. Chem. 1992, 31, 3756.
- (5) Dou, D.; Kaufmann, B.; Duesler, E. N.; Chen, T.; Paine, R. T.; Nöth, H. Inorg. Chem. **1993**, *32*, 3056.
- (6) Chen, T.; Duesler, E. N.; Paine, R. T.; Nöth, H. Inorg. Chem. 1997, 36, 803.
- (7) Chen, T.; Kaufmann, B.; Duesler, E. N.; Paine, R. T.; Nöth, H. Submitted for publication.
- (8) A sample of ⁱPr₂NBP(H)(ⁱPr₂NB)PLi·DME (1.5 g, 3.9 mmol) was added to Si₂Cl₆ (0.28 g, 1.0 mmol) in hexane (60 mL) at -78 °C. The mixture was stirred (1 h), warmed to 23 °C, and stirred (5 h). The suspension was filtered, the filtrate cooled to -78 °C, 'BuLi (1.8 mL, 1.7 M pentane solution, 3.0 mmol) added, and the mixture stirred (1 h). The mixture was warmed to 23 °C, stirred (15 h), and then evaporated to dryness. The residue was extracted with toluene, and a pale yellow powder was recovered following vacuum evaporation of the toluene. Recrystallization of the powder from cold (-10 °C) hexane/THF solution afforded pale yellow crystals: yield 0.32 g (35%); mp >250 °C. HR-FAB-MS, *m/e*: calcd for C₃₆H₈₄N₆P₆Si₂¹⁰B₂¹¹B₄, 906.5353; found, 906.5347; deviation 0.6 ppm. ³¹P{¹H} NMR (C₆D₆): δ 9.0(2), -59.0(1). ¹¹B{¹H} NMR (C₆D₆): δ 50.8(1), 42.8: (2). ¹¹M NMR (C₆D₆): δ 4.02 (br, 4H, CH), 3.86 (sept, 8H, ³J_{HH} = 6.8 Hz, CH), 1.25-1.24 (m, 72H, CH₃). ¹³C{¹H} NMR (C₆D₆): δ 52.8 (CH), 51.4 (CH), 24.7, 24.6, 23.8, 23.6, 23.4 (CH₃).

Figure 1. Molecular structure and atom-labeling scheme for $P_{6}(P_{T_2}-NB)_6Si_2$, **1**, with H atoms omitted and Pr carbon atom labels removed for clarity (30% probability ellipsoids). Selected bond lengths (Å): Si-(1)-Si(2) 2.373(2), Si(1)-P(1) 2.271(2), Si(1)-P(3) 2.258(2), Si(1)-P(4) 2.271(2), Si(2)-P(2) 2.262(2), Si(2)-P(5) 2.262(2), Si(2)-P(6) 2.253(2), P(1)-B(1) 1.975(6), P(1)-B(2) 1.957(6), P(2)-B(1) 1.950-(6), P(2)-B(2) 1.973(5), P(3)-B(3) 1.947(6), P(3)-B(4) 1.959(6), P(4)-B(3) 1.972(6), P(4)-B(4) 1.984(7), P(5)-B(5) 1.964(6), P(5)-B(6) 1.969(7), P(6)-B(5) 1.947(6), P(6)-B(6) 1.970(6).

six-atom cage $P_2(Pr_2NB)_2Si_2Me_4$ (3).⁵ The Si(1)-Si(2) bond length, 2.273(2) Å, is in the single-bond range but is considerably shorter than the value in **3**, 2.352(2) Å. The average P-Si distances in the P₂B₂Si fragment, 2.262 Å, and in the P₂B₂Si₂ fragment, 2.267 Å, are identical to the average distance in **3** but slightly longer than that in **2**, 2.244 Å. The average P-B bond lengths in the P₂B₂Si fragment and P₂B₂Si₂ fragment are identical, 1.964 Å (range 1.947(6)-1.984(7) Å), and these compare with 1.973 Å in **2** and 1.978 Å in **3**. There is likely a larger strain energy involved in the P₂B₂Si cage fragments than in the P₂B₂Si₂ fragment, as suggested by differences in internal angles (e.g., the average sum of angles about the P atoms in the P₂B₂Si fragments is 212.9° compared to the sum in P₂B₂-Si₂, 254.8°).

The NMR spectra for **1** are consistent with this structure. The ³¹P{¹H} NMR spectrum shows two resonances at δ 9 and -59 in a 2:1 area ratio that are assigned to the P atoms in the P₂B₂Si and P₂B₂Si₂ fragments, respectively. These shifts may be compared with values for the five-atom cage **2**, ⁵ δ -18.4, and the six-atom cage **3**, ⁵ δ -84.9. The ¹¹B{¹H} NMR

[†] University of New Mexico.

⁽⁹⁾ Crystal data for 1: C₃₆H₈₄B₆N₆P₆Si₂, M_r = 908.0, monoclinic space group P2₁/c, a = 18.341(4) Å, b = 12.167(2) Å, c = 26.584(5) Å, α = γ = 90°, β = 106.49(3)°, V = 5689(2) Å³, Z = 4, ρ_{calcd} = 1.060 g cm⁻³, F(000) = 1960, λ = 0.710 73 Å, T = 20 °C, μ(Mo Kα) = 0.260 mm⁻¹. Data were collected in the ω-scan mode on a Siemens R3m/V diffractometer for a pale yellow crystal (0.25 × 0.31 × 0.46 mm) in a glass capillary. A total of 16 609 reflections were collected, with 8307 independent for which 4669 were observed with F > 1.42σ-(F). The structure was solved by direct methods, and data were corrected for Lorentz and polarization effects. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in idealized positions (riding model) with U_{iso} = 1.25U_{eq} (parent atom). Refinement by full-matrix least-squares techniques converged with R = 5.71% and R_w = 3.32%.

Communications

spectrum also contains two resonances centered at δ 42.8 and 50.8, with a 2:1 area ratio, that are assigned to equivalent boron environments in the two P₂B₂Si cages and equivalent boron atoms in the P₂B₂Si₂ fragment. The ¹H NMR spectrum contains a complex set of resonances in the range δ 1.25–1.24 (relative intensity 72), assigned to inequivalent methyls in the 12 ^{*i*}Pr groups, and two methine resonances, δ 3.86 and 4.02 (relative intensity 8:4). Two *C*H resonances and five *C*H₃ resonances are resolved in the ¹³C{¹H} NMR spectrum.

In the context of developing syntheses for more complex cage structures, it is of interest to understand the pathway by which **1** is assembled. The proposed process is outlined in Scheme 1. The addition of 4 equiv of **4** to Si_2Cl_6 is believed to initially produce **6** by substitution of a diphosphadiboretanyl ring on each silicon atom. Compound **6** apparently is short-lived in the reaction medium and is not isolated. This proposal is supported by our previous report⁵ of a tetramethyl analog of **6**,

{['Pr₂NBP(H)('Pr₂NB)P]Si(Me)₂}₂, formed from **4** and [Me₂-(Cl)Si]₂. Compound **6** undergoes rapid intramolecular dehydrohalogenation promoted by the remaining 2 equiv of **4**, producing **7** and 2 equiv of **5**. Compound **7** was not isolated and purified; however, the ³¹P NMR spectrum of the system prior to the addition of 'BuLi shows a resonance for the known compound **5**, δ 164,¹⁰ and a resonance at δ –1.0, which is in the region expected for a bicyclic cage fragment.⁵ Subsequent addition of 'BuLi to this reaction mixture should produce **1**, and if sufficient 'BuLi is present, **5** should be converted to **4**. The formation of both **1** and **4** is confirmed by ³¹P NMR spectra. In fact, the presence of **4** instead of **5** in the final product mixture facilitates separation and purification of **1** since **1** and **4** have very different solubility properties.

(10) Dou, D.; Westerhausen, M.; Wood, G. L.; Linti, G.; Duesler, E. N.; Nöth, H.; Paine, R. T. Chem. Ber. **1993**, *126*, 379. Scheme 1

Formation of **1** represents the first of numerous, large-cage species that should be accessible through modifications of this reaction scheme, and extensions are in progress at this time.

Acknowledgment. The authors thank the National Science Foundation (Grant CHE-9508668) for financial support.

Supporting Information Available: X-ray crystallographic files, in CIF format, are available on the Internet only. Access information is given on any current masthead page.

IC961421D